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i 7 Introduction:

Many important problems of engineering and management are of a form
which coculd be represented as geometric programs except that the

functional to be minimized as well as the constraints are not confined

1/
to "posynomials" in that some of the coefficients are negative. The

resulting problem thus may not, in general, be transformed to an
2/
equivalent convex programming problem. To date the only general

method for obtaining global optima to (necessarily non-convex) problems
with multiple local optima is Gomory's integer programming method.g/

We are herewith proposing an approximate method for another class cf
problems with multiple local optima--viz., extensions of geometric
programming in which some of the coefficients are negative. This method
provides, at each stage, a convex approximant which, a fortiori, provides
the duality relations that are needed for many purposes. This 1is in
contrast to other approaches which either lose these Juality relationsﬁl

5/
or else restrict the applications to special situations. More specifically,

1/ Cf. [ 7 ] for definitions of this and other terminology in geometric
programming.

2/ cf., e.g., the exponential transformations used in [ 3 ] and [ 4 ].

3/ See[8 ] and [ 9 ] for Gomory's original articles. See also [ 2]
and [ 6] for further discussion and development.

4/ cf., e.g., [ 10].

5/ The constraints in [ 3] and [ 5], for instance, were arranged so that
they could always be treated in a manner which did not preclude
access to the indicated duality. Other possibilities are also
present, however, aswitness some of the examples, treated in [7].
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the method that we shall describe here is conceived in the same spirit

as previous suggestions we have made as a result of other research we have
. 1/

conducted to extend the boundaries of ordirary linear programming.

28 Formulation and Development of the Convex Approximant:
2/
Consider the following problem

min g -8
(1.3)

subject to

where the g;, g; are posynomials in

(1.2) t = (tl, A tn) .
I.e.,
ef = £ P () gz B (b)
i Jed, 1] Bk keK, 1]
1] 14
a a
4= - + 1 n
Pij(t) = cij t1 s e et
(1.3)
p 1 o 1
1 n

Pij(t) = cij t1 s e et

1/ Cf., e.g., [ 1 Jand [ 5 ].

2/ To abbreviate this part of the development, it is assumed that all
- conditions for existence and attainment of the indicated minima are
fulfilled. Cf. [ 7 ] for a rigorous treatment of the relevant

necessary and sufficient conditions in complete detail.




Note that the above problem is a generalization of ordinary geometric

programming in that the constraints and the functional are not confined

to posynomials.

9% Formulation of Approximants:

Each one-term posynomial PI

h
be replaced by a single variable yij subject to

(2.1) yy, < Ppy0)
or
(2.2) vy [P (07 <1

which is the same as

vy [ -bld 1)
(2.3) - e, L ...t © < 1

c 1 n

1)

(t) in the preceding expressions mav

The resulting problem in t and the y1j is equivalent to (1.1).

Next, let us suppose that the range of each y1J relevant to the

optimization may be represented by

(3) 0<L1j§_yijguij

We then introduce kij > Uij and consider the function

(4) fij(yij) S kij " Yy

as diagrammed below. Evidently over the interval (L

function (4) is positive and bounded above and below.

1y’

Uij) the linear

It may thus be

= M.



approximated by a posynomial

1) &
(5) qij(yij) = idk (yij)

k

where the dtj are suitably selected positive constants.

1) 1}

Yij
Ly, L.

To the degree of approximation thus rendered--e.g., approximation
of the linear function by posynomials--the original problem (1.1) is now

replaced by



~5=

m
0
min g:(t) +-j§1 1.5 gy
subject to m
(o]
+
gi(e) + £ q, (y,,) <1tz k
(6) T T N j

- -1
[y, (8] " yyy <1

-1
YUy <1
-1
Yy9 Iyy St
t>0

This problem may evidently be transformed (e.g., by the exponential
transformation)l/ into a convex programming problem. We therefore
call it a convex approximant of the original problem. It therefore
follows that it has only one local (= global) optimum value.

Note in particular that each convex approximant has an associated
dual problem. Thus a dual evaluator is available for each constraint.
Those that refer to the Uij’ Lij

of improvement if these upper or lower bounds are tight. The dual

corstraints indicate possible directions

evaluator is, of course, equal to zero when hese bounds are slack. The
approximation can thus be improved in the neighborhood of any already
attained optimum by, e.g., reducing the range of the slack Uij and Lij’
thereby enabling one to make an improved posynomial fit in the next

1/ sSee[3 ] and [4 ].
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convex programming approximant. Similarly, the interval may be
reduced and translated in the direction indicated by the non-zero dual
1y’ L1j constraints.

Thus, sequentially, the convex approximant can be refined. One

evaluator for the tight U

would expect the global optimum to be obtained by this method in
situations where the original problem has multiple local optima. For,
if the global optimum value were significantly different from that of
other local optima, one would anticipate that the small modifications
of the smooth ccntinuous functionc to equally smcoth continuous
approximants would not significantly alter the global optimum. Since
the convex approximant has onlr one local (= global) optimum, its value
should therefore be close to the global optimum value of the original
problem. On the other hand, when the global optimum value of the
original does not differ significantly fromother local optimum values,
the precise optimum obtained matters littie so far as value is concerned.
In either situation therefore one would expect a sequence of convex

aporoximants to yield a worthwhile result.

3. Conclusion:

In the paper [ 4 ], we showed how geometric programming could
be applied to the determination of multiple simultaneous EOQ (economic
order quantity) formulas under constraints as well as to aspects of the
economic.theory of production (e.g., with Cobb-Douglas and generalized

SMAC production functions). Still further extensions in this direction

———— e —— n)
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(e.g., to problems of capital budgeting) critically depend on the

possibility of dealing with the presence of negative coefficients--as -
in (1.1)-~and the same is true even of the originally motivated applications
to engineering designs when, for instance, scrap values require

consideration. Even more important, however, is the need for increased
flexibility as when, for instance, there is a need to deal with problems

where the natural original orientation is toward maximization (rather

than minimization) and where a restriction to posynomials only makes it

impossible to proceed through the negative of an associated minimization

problem. A recourse to the convex approximant method would then seem to

be in order--at least in these cases and possibly others as well.

1/ E.g., as in ordinary linear programming. Cf., e.g., [ 2 ] or [ 6 ].

1 4
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